Spotlight on a Young Scientist: Lalita Prasida
Sripada Srisai
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Lalita Prasida Sripada Srisai
Home: Odisha, India
Age Category: 13-15
Project title: Absorbing water pollutants with corn cobs
Lalita was inspired to find a use for corn cobs, unused agricultural waste, during a conversation with a tribal farmer in a nearby village. Considering the prominence of water pollution in her country, she decided to use the cobs to improve water quality and ultimately provide access to healthier drinking water. She tested several different methods and found that corn cobs can absorb chemicals, detergents and other pollutants directly from the water. Lalita’s project goal is to provide more clean water for nearby villages.
What was the inspiration behind your project?
When I was in nursery school, I dressed up as a corn cob and won the prize for the Fancy Dress Competition. Since then, corn has been one of my favourite vegetables. I love roasted, grilled or steamed corn ears, and roasted corn on the cobs is a popular street food in India. Interestingly, all the parts of the corn plant except the actual cobs are useful. I’ve wondered for a long time how to make use of corn cobs. One day I made a hole at the centre of a cob using a screwdriver. Then I poured some dirty water inside the hole and collected the extract from the other end. Surprisingly, the collected extract was devoid of all the suspended particles. This inspired me to search, examine and experiment whether we could clean wastewater by using corn cobs. This could reduce waste by using another form of waste. Luckily, I was supported by my mentor to plan the project in detail and encouraged to participate in this year's Google Science Fair.
When and why did you become interested in science?
I am the privileged eldest daughter of my father, who’s a science teacher. Very often he used to take me to the chemistry lab so that I could perform experiments with his students. My frequent visits to the lab packed with variously coloured chemicals attracted my attention since childhood. In my home, I learned how to get around the kitchen from my mother. To me, mixing, soaking, roasting, grinding and baking different ingredients of right proportion to get maximum taste, flavour, energy and above all satisfaction is based more on science than art. Both of my parents ignited my interest in science from a young age.
What words of advice would you share with other young scientists?
Always observe your surroundings keenly. You never know what scientific breakthrough you may stumble upon.
Name: Lalita Prasida Sripada Srisai
Home: Odisha, India
Age Category: 13-15
Project title: Absorbing water pollutants with corn cobs
Lalita was inspired to find a use for corn cobs, unused agricultural waste, during a conversation with a tribal farmer in a nearby village. Considering the prominence of water pollution in her country, she decided to use the cobs to improve water quality and ultimately provide access to healthier drinking water. She tested several different methods and found that corn cobs can absorb chemicals, detergents and other pollutants directly from the water. Lalita’s project goal is to provide more clean water for nearby villages.
What was the inspiration behind your project?
When I was in nursery school, I dressed up as a corn cob and won the prize for the Fancy Dress Competition. Since then, corn has been one of my favourite vegetables. I love roasted, grilled or steamed corn ears, and roasted corn on the cobs is a popular street food in India. Interestingly, all the parts of the corn plant except the actual cobs are useful. I’ve wondered for a long time how to make use of corn cobs. One day I made a hole at the centre of a cob using a screwdriver. Then I poured some dirty water inside the hole and collected the extract from the other end. Surprisingly, the collected extract was devoid of all the suspended particles. This inspired me to search, examine and experiment whether we could clean wastewater by using corn cobs. This could reduce waste by using another form of waste. Luckily, I was supported by my mentor to plan the project in detail and encouraged to participate in this year's Google Science Fair.
Lalita's interest in corn started from an early age |
I am the privileged eldest daughter of my father, who’s a science teacher. Very often he used to take me to the chemistry lab so that I could perform experiments with his students. My frequent visits to the lab packed with variously coloured chemicals attracted my attention since childhood. In my home, I learned how to get around the kitchen from my mother. To me, mixing, soaking, roasting, grinding and baking different ingredients of right proportion to get maximum taste, flavour, energy and above all satisfaction is based more on science than art. Both of my parents ignited my interest in science from a young age.
What words of advice would you share with other young scientists?
Always observe your surroundings keenly. You never know what scientific breakthrough you may stumble upon.
Spotlight on a Young Scientist: Alexey Tarasov
Friday, August 28, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Alexey Tarasov (Алексей Тарасов)
Home: Moscow, Russia
Age Category: 13-15
Project title: Using ternary logic on current electronics
Alexey had always been a computer science fan, but it was fixing a computer that really sparked his curiosity. He wondered why all modern day computers ran on binary logic, and if there might be a benefit to using ternary logic. Once he found out that a vintage USSR computer did, in fact, rely on ternary logic, he knew he wanted to test this logic on current electronics. Alexey’s model successfully used ternary logic, and he’s excited to create new ternary logic elements for integrated circuits and computer systems.
What was the inspiration behind your project?
I was inspired by the old Soviet project called "Setun."
When and why did you become interested in science?
All my life I was interested in engineering. I was very interested in the structure of different devices and desired to create. This is what pushed me to study technologies.
What words of advice would you share with other young scientists?
It's not enough to just discover something new. You need to make it useful for mankind. Good luck!
Name: Alexey Tarasov (Алексей Тарасов)
Home: Moscow, Russia
Age Category: 13-15
Project title: Using ternary logic on current electronics
Alexey had always been a computer science fan, but it was fixing a computer that really sparked his curiosity. He wondered why all modern day computers ran on binary logic, and if there might be a benefit to using ternary logic. Once he found out that a vintage USSR computer did, in fact, rely on ternary logic, he knew he wanted to test this logic on current electronics. Alexey’s model successfully used ternary logic, and he’s excited to create new ternary logic elements for integrated circuits and computer systems.
What was the inspiration behind your project?
I was inspired by the old Soviet project called "Setun."
When and why did you become interested in science?
All my life I was interested in engineering. I was very interested in the structure of different devices and desired to create. This is what pushed me to study technologies.
What words of advice would you share with other young scientists?
It's not enough to just discover something new. You need to make it useful for mankind. Good luck!
Spotlight on a Young Scientist: Eliott Sarrey
Thursday, August 27, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Eliott Sarrey
Home: Lorraine, France
Age Category: 13-15
Project: Bot2Karot: gardening through a smartphone-activated robot
Eliott loved the idea of gardens, but not the time commitment needed to tend them. He wondered whether he could apply his knowledge and passion for video games and video programming towards growing vegetables. With help from his father, he built a rolling robot controlled by a smartphone app he created. Since the manufactured Bot2Karot can use its manufactured arms and tool holders to hoe, water and transplant, Elliot’s extremely excited about the possibilities with his own robot. He believes he can broaden his initial aim to help people with limited mobility and access.
What was the inspiration behind your project?
People I know spend a lot of time on gardening simulators (games). On the other hand, my family’s actual garden requires a lot of real work and attention. After careful observation, I wondered whether I could mix the idea of the gardening game with the fun of having real vegetables to eat. What if we could create a robot to take on cumbersome gardening tasks using our smartphones, so that gardening becomes a smartphone game?
When and why did you become interested in science?
When I was quite young, I spent a lot of time in my father’s small workshop. I also liked to play Legos, and with this experience, I could dig into subjects like mechanics and physics. Three years ago, together with friends, I created a computer science club and a robotic club at my high school. That’s where I learned how to program. At home, I created small robots and robotic arms, which became the real inspiration for my project.
What words of advice would you share with other young scientists?
First of all, be curious! That’s how you come up with ideas. Seek solutions and always ask yourself how to improve on them. Once you have found your idea, do some research, persevere, investigate other solutions and keep optimizing your solution.
Name: Eliott Sarrey
Home: Lorraine, France
Age Category: 13-15
Project: Bot2Karot: gardening through a smartphone-activated robot
Eliott loved the idea of gardens, but not the time commitment needed to tend them. He wondered whether he could apply his knowledge and passion for video games and video programming towards growing vegetables. With help from his father, he built a rolling robot controlled by a smartphone app he created. Since the manufactured Bot2Karot can use its manufactured arms and tool holders to hoe, water and transplant, Elliot’s extremely excited about the possibilities with his own robot. He believes he can broaden his initial aim to help people with limited mobility and access.
What was the inspiration behind your project?
People I know spend a lot of time on gardening simulators (games). On the other hand, my family’s actual garden requires a lot of real work and attention. After careful observation, I wondered whether I could mix the idea of the gardening game with the fun of having real vegetables to eat. What if we could create a robot to take on cumbersome gardening tasks using our smartphones, so that gardening becomes a smartphone game?
When and why did you become interested in science?
When I was quite young, I spent a lot of time in my father’s small workshop. I also liked to play Legos, and with this experience, I could dig into subjects like mechanics and physics. Three years ago, together with friends, I created a computer science club and a robotic club at my high school. That’s where I learned how to program. At home, I created small robots and robotic arms, which became the real inspiration for my project.
What words of advice would you share with other young scientists?
First of all, be curious! That’s how you come up with ideas. Seek solutions and always ask yourself how to improve on them. Once you have found your idea, do some research, persevere, investigate other solutions and keep optimizing your solution.
Spotlight on a Young Scientist: Calvin Rieder
Wednesday, August 26, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Calvin Rieder
Home: Ontario, Canada
Age Category: 16-18
Project title: Extracting clean water from air: solar-powered solution for providing potable water
Calvin once saw a camping trick that transformed air into water. The power of that simple trick stuck with him, and then he realized it just might save lives. He decided to use that model to help provide safe drinking water to the billions around the world with limited access to clean water. Without a lab, Calvin built a model at home (powered by the sun) to extract water from the air without external energy or mechanical assistance. Calvin was extremely excited to see that his condensation model produced water for 12.5 hours per night. He looks forward to the impact his model could make for those in need of our most necessary natural resource.
What was the inspiration behind your project?
When deciding on my first science fair project, my main focus was to address a significant global challenge. I chose the global water crisis as my subject after learning that over 1 billion people lack access to sufficient clean water. I was also shocked that a child dies every minute from a water-related disease and that in some areas of the world women spend up to twelve hours a day walking to obtain water. I decided to try to create devices that could produce potable water from the atmosphere at low cost to improve water access for some of these people. Around that time, an earthquake struck Haiti, and I remember thinking that the devices I was developing, which did not require infrastructure, could also be useful in this type of disaster situation. In the majority of water shortages, those most affected are those who are impoverished and cannot afford water production systems with running costs. In addition, frequently these people live in areas without infrastructure. I also decided that any system I would create would have to have no negative impact on the environment, as I didn’t want to create new problems while solving an old one. For these reasons, I decided that the devices had to operate without an electrical power source or infrastructure. Finally, while my devices were attempting to address the problem of water scarcity, millions only have access to contaminated water, and 2.5 billion people live in areas with inadequate sanitation. I also wanted to address this huge problem, again without electrical assistance or a requirement for infrastructure. For this reason, I developed an efficient, new solar still which uses solar energy to convert contaminated water into potable water.
When and why did you become interested in science?
I have always been interested in how things work, in constructing new things. From a young age, I loved kids’ science shows. When I was 6 years old, I became fascinated with marine biology, starting with sharks, and I’m still very passionate about this subject. In Grade 7, our school held a science fair that I found success in, and this experience motivated me to continually improve my work and participate in several successive science fairs. My interest and passion for science continues to increase with each fair that I participate in. I consider these amazing opportunities to learn and explore.
What words of advice would you share with other young scientists?
Work hard and persist, because when researching, things rarely happen overnight. So you get what you put into it. Also, don’t be afraid to think big and take on problems that seem beyond your ability to solve, because often small ideas can lead to significant new solutions. Finally, never become disheartened by failure or problems that arise in your work, as it’s all part of the process.
Name: Calvin Rieder
Home: Ontario, Canada
Age Category: 16-18
Project title: Extracting clean water from air: solar-powered solution for providing potable water
Calvin once saw a camping trick that transformed air into water. The power of that simple trick stuck with him, and then he realized it just might save lives. He decided to use that model to help provide safe drinking water to the billions around the world with limited access to clean water. Without a lab, Calvin built a model at home (powered by the sun) to extract water from the air without external energy or mechanical assistance. Calvin was extremely excited to see that his condensation model produced water for 12.5 hours per night. He looks forward to the impact his model could make for those in need of our most necessary natural resource.
What was the inspiration behind your project?
When deciding on my first science fair project, my main focus was to address a significant global challenge. I chose the global water crisis as my subject after learning that over 1 billion people lack access to sufficient clean water. I was also shocked that a child dies every minute from a water-related disease and that in some areas of the world women spend up to twelve hours a day walking to obtain water. I decided to try to create devices that could produce potable water from the atmosphere at low cost to improve water access for some of these people. Around that time, an earthquake struck Haiti, and I remember thinking that the devices I was developing, which did not require infrastructure, could also be useful in this type of disaster situation. In the majority of water shortages, those most affected are those who are impoverished and cannot afford water production systems with running costs. In addition, frequently these people live in areas without infrastructure. I also decided that any system I would create would have to have no negative impact on the environment, as I didn’t want to create new problems while solving an old one. For these reasons, I decided that the devices had to operate without an electrical power source or infrastructure. Finally, while my devices were attempting to address the problem of water scarcity, millions only have access to contaminated water, and 2.5 billion people live in areas with inadequate sanitation. I also wanted to address this huge problem, again without electrical assistance or a requirement for infrastructure. For this reason, I developed an efficient, new solar still which uses solar energy to convert contaminated water into potable water.
When and why did you become interested in science?
I have always been interested in how things work, in constructing new things. From a young age, I loved kids’ science shows. When I was 6 years old, I became fascinated with marine biology, starting with sharks, and I’m still very passionate about this subject. In Grade 7, our school held a science fair that I found success in, and this experience motivated me to continually improve my work and participate in several successive science fairs. My interest and passion for science continues to increase with each fair that I participate in. I consider these amazing opportunities to learn and explore.
What words of advice would you share with other young scientists?
Work hard and persist, because when researching, things rarely happen overnight. So you get what you put into it. Also, don’t be afraid to think big and take on problems that seem beyond your ability to solve, because often small ideas can lead to significant new solutions. Finally, never become disheartened by failure or problems that arise in your work, as it’s all part of the process.
Spotlight on a Young Scientist: Olivia Hallisey
Tuesday, August 25, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Olivia Hallisey
Home: Connecticut, USA
Age Category: 16-18
Project title: Temperature-independent, inexpensive and rapid detection of Ebola
Olivia was shocked to learn about the Ebola epidemic spreading through Africa. She wondered how to get treatment delivered faster to the people that needed it and recalled her science lesson about silk storage. With it’s stabilizing properties, could silk allow Ebola antibodies to travel much longer without the need for refrigeration? After a few attempts, Olivia created the Ebola Assay card – her new antibody storage system that can be designed in 30 minutes anywhere in the world and can transport vaccines/antibodies for Ebola, HIV and other diseases for up to one week.
What was the inspiration behind your project?
My decision to focus my project on the development of a novel temperature-independent, rapid, portable and inexpensive diagnostic test for the detection of the Ebola virus, was prompted by the devastating loss of life in Africa during the most recent 2014 Ebola outbreak. The consequences will be far-reaching with valuable applicability as an ELISA-based diagnostic for other diseases, including HIV, lyme disease, yellow fever, dengue fever and certain cancers. The concentration of fatalities in Ebola stricken areas has left many children orphaned, and the socioeconomic fabric of entire villages destroyed. School closures have impacted over five million children, risking permanent educational dislocation and high risk behaviors such as child labor. Early diagnosis and proper medical care are critical to containing and eliminating the spread of Ebola and any other contagious illnesses.
When and why did you become interested in science?
I became interested in science as a young child because of my late grandfather, a doctor and medical researcher. He showed me the power of science and research to make new discoveries that could lead to breakthroughs that could give back hope and transform futures. He was passionate about science and medicine and cared deeply that his work would contribute towards a greater understanding and a cure for diseases such as Cystic Fibrosis and Alzheimers. I hope to be a doctor like my grandfather, and one day work for a global health organization, such as Doctors Without Borders.
What words of advice would you share with other young scientists?
Think globally. Reconsider existing solutions and always ask “Why not?” Don’t think that everything that can be done has been done. There’s always room for innovation and creative reconsideration. Everyone has a role in change.
Name: Olivia Hallisey
Home: Connecticut, USA
Age Category: 16-18
Project title: Temperature-independent, inexpensive and rapid detection of Ebola
Olivia was shocked to learn about the Ebola epidemic spreading through Africa. She wondered how to get treatment delivered faster to the people that needed it and recalled her science lesson about silk storage. With it’s stabilizing properties, could silk allow Ebola antibodies to travel much longer without the need for refrigeration? After a few attempts, Olivia created the Ebola Assay card – her new antibody storage system that can be designed in 30 minutes anywhere in the world and can transport vaccines/antibodies for Ebola, HIV and other diseases for up to one week.
What was the inspiration behind your project?
My decision to focus my project on the development of a novel temperature-independent, rapid, portable and inexpensive diagnostic test for the detection of the Ebola virus, was prompted by the devastating loss of life in Africa during the most recent 2014 Ebola outbreak. The consequences will be far-reaching with valuable applicability as an ELISA-based diagnostic for other diseases, including HIV, lyme disease, yellow fever, dengue fever and certain cancers. The concentration of fatalities in Ebola stricken areas has left many children orphaned, and the socioeconomic fabric of entire villages destroyed. School closures have impacted over five million children, risking permanent educational dislocation and high risk behaviors such as child labor. Early diagnosis and proper medical care are critical to containing and eliminating the spread of Ebola and any other contagious illnesses.
When and why did you become interested in science?
I became interested in science as a young child because of my late grandfather, a doctor and medical researcher. He showed me the power of science and research to make new discoveries that could lead to breakthroughs that could give back hope and transform futures. He was passionate about science and medicine and cared deeply that his work would contribute towards a greater understanding and a cure for diseases such as Cystic Fibrosis and Alzheimers. I hope to be a doctor like my grandfather, and one day work for a global health organization, such as Doctors Without Borders.
What words of advice would you share with other young scientists?
Think globally. Reconsider existing solutions and always ask “Why not?” Don’t think that everything that can be done has been done. There’s always room for innovation and creative reconsideration. Everyone has a role in change.
Spotlight on a Young Scientist: Deepika Kurup
Monday, August 24, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Deepika Kurup
Home: New Hampshire, USA
Age Category: 16-18
Project title: Solar powered silver combating bacteria in drinking water
During her family summer visits to India, Deepika was troubled to see small children drinking polluted water from streams. She wondered how developing countries could best clean their water, and once returning to the U.S. tested different chemicals. She found that a solution mixed with silver and powered by the sun removed bacteria faster than current methods. With this finding, she hopes to provide cleaner drinking water to families in India and around the world.
What was the inspiration behind your project?
Every summer my family and I travel across the world to visit India. In America, I always had the privilege of having unlimited access to potable water; however, in India I saw children drink water that I felt was too dirty to touch. I wanted to find out why these people lacked access to safe water, a substance that’s essential for life. I learned that we’re facing a global water crisis. According to the World Health Organization, one-ninth of the global population lacks access to clean water. This unacceptable social injustice compelled me to find a solution to the world’s clean water problem.
When and why did you become interested in science?
I’ve always been curious about the world around me. When I was younger, I’d constantly ask my parents questions about how the world works, and their explanations were often rooted in scientific concepts. As I grew, I began to notice that science is truly everywhere. After hearing about scientific discoveries on the news and reading stories of famous scientists in the past, I realized that science has the power to lead us to revolutionary new discoveries that can change the world. This passion for science, combined with my interest in solving global challenges, is what sparked my interest in research.
What words of advice would you share with other young scientists?
I would strongly encourage other young scientists to continue to pursue their passions in science, technology, engineering and math. While scientific advancements are being made every day, our world still faces several grand challenges. We need young scientists to solve these grand challenges, as science has the power to help people find solutions to problems we never thought could be solved.
Name: Deepika Kurup
Home: New Hampshire, USA
Age Category: 16-18
Project title: Solar powered silver combating bacteria in drinking water
During her family summer visits to India, Deepika was troubled to see small children drinking polluted water from streams. She wondered how developing countries could best clean their water, and once returning to the U.S. tested different chemicals. She found that a solution mixed with silver and powered by the sun removed bacteria faster than current methods. With this finding, she hopes to provide cleaner drinking water to families in India and around the world.
What was the inspiration behind your project?
Every summer my family and I travel across the world to visit India. In America, I always had the privilege of having unlimited access to potable water; however, in India I saw children drink water that I felt was too dirty to touch. I wanted to find out why these people lacked access to safe water, a substance that’s essential for life. I learned that we’re facing a global water crisis. According to the World Health Organization, one-ninth of the global population lacks access to clean water. This unacceptable social injustice compelled me to find a solution to the world’s clean water problem.
When and why did you become interested in science?
I’ve always been curious about the world around me. When I was younger, I’d constantly ask my parents questions about how the world works, and their explanations were often rooted in scientific concepts. As I grew, I began to notice that science is truly everywhere. After hearing about scientific discoveries on the news and reading stories of famous scientists in the past, I realized that science has the power to lead us to revolutionary new discoveries that can change the world. This passion for science, combined with my interest in solving global challenges, is what sparked my interest in research.
What words of advice would you share with other young scientists?
I would strongly encourage other young scientists to continue to pursue their passions in science, technology, engineering and math. While scientific advancements are being made every day, our world still faces several grand challenges. We need young scientists to solve these grand challenges, as science has the power to help people find solutions to problems we never thought could be solved.
Spotlight on a Young Scientist: Zhilin Wang
Thursday, August 20, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Zhilin Wang
Home: Singapore
Age Category: 16-18
Project title: Zinc air batteries for affordable, renewable energy storage
Zhilin has used his large capacity for wonder to question everything since he was a young boy. This strong curiosity for not just what goes on around him but what happens in other countries led him to understand how developing countries access renewable energy. To speed up the slow chemical reaction produced by oxidizing zinc with oxygen from the air, Zhilin built an aerogel consisting of carbon nanotubes and graphene. His gel sped up the oxidation process, allowing faster storage of renewable energy. He looks forward to testing his aerogel in villages that don’t have electricity – rather than the multiple sources we rely on today. This system, with a little more development, could have expansive use in areas ranging from wearable computing to location-based applications, where an instant and accurate indoor 3D positioning system is in high demand.
What was the inspiration behind your project?
Looking at the world around me, I can’t help but marvel at how far our search for novel materials has come to improve our everyday living. Nowadays, such materials are literally everywhere: in our smartphones, our clothes and even, for some of us, our bodies. Once in a while, when I find out about a novel material, I get really excited and dream about how it might shape our future.
Graphene aerogel is one such material. Think about this: you have a solution of graphene and a solvent, say water. If you can remove the solvent to leave behind only the graphene framework (or more illustratively, a graphene skeleton), you have yourself a graphene aerogel with some curious characteristics. It is super conductive, ultralight – reaching below the density of atmospheric air in some samples – and has a contact surface area matched by few. This means that it can potentially make astounding improvements in many of the things we use on a daily basis. I was eager to see if it can be applied to something that it had never been tested on before. So when a need for improving the efficiency of batteries came my way, I thought, “why not use graphene aerogel?”
With a stroke of luck, the graphene aerogel turned out to be suitable for the battery. Yet, I didn’t want to end my project there; I wanted to see if the improved battery could directly impact the lives of people. Having reflected upon some of the things I was grateful for, I realized that one of the most wonderful gifts I have received is a quality education. Without it, I wouldn’t have been able to read my favorite books, learn so much about the world or even participate in this competition. Yet, many in underdeveloped regions do not receive basic education. Despite the promotion of global education, a great deal of children are forced out of school to support their families by working on farms or in factories. The only time they could spare for education is in the evenings but even then, the scarcity of reliable lighting means they’re unable to learn in the dark, as much as they want to. Can my battery be used to light up their nights? I didn’t know for sure, so I tried to find out.
When and why did you become interested in science?
My love for science started around the time I was in primary school, when I found myself so curious about everything around me. You can say that every opportunity for me to discover something new was as irresistible as a candy laid before me. Of the many things I wanted to know, scientific demonstrations particularly piqued my interest. They seemed almost magical – water instantly freezing on a hard knock, violent fountains formed from Coca Cola and mints. But I wasn’t satisfied with merely marveling at them. I wanted to appreciate their inner beauty and understand how they actually worked. For me, science is about having a passion for the beauty of the world around us and understanding how and why things happen in it. Isn’t that much more interesting than simply accepting things as they are?
What words of advice would you share with other young scientists?
Never be afraid to ask questions concerning things you are curious about, for what lies ahead is either a path of discovery or at least the joy of learning something new.
Name: Zhilin Wang
Home: Singapore
Age Category: 16-18
Project title: Zinc air batteries for affordable, renewable energy storage
Zhilin has used his large capacity for wonder to question everything since he was a young boy. This strong curiosity for not just what goes on around him but what happens in other countries led him to understand how developing countries access renewable energy. To speed up the slow chemical reaction produced by oxidizing zinc with oxygen from the air, Zhilin built an aerogel consisting of carbon nanotubes and graphene. His gel sped up the oxidation process, allowing faster storage of renewable energy. He looks forward to testing his aerogel in villages that don’t have electricity – rather than the multiple sources we rely on today. This system, with a little more development, could have expansive use in areas ranging from wearable computing to location-based applications, where an instant and accurate indoor 3D positioning system is in high demand.
What was the inspiration behind your project?
Looking at the world around me, I can’t help but marvel at how far our search for novel materials has come to improve our everyday living. Nowadays, such materials are literally everywhere: in our smartphones, our clothes and even, for some of us, our bodies. Once in a while, when I find out about a novel material, I get really excited and dream about how it might shape our future.
Graphene aerogel is one such material. Think about this: you have a solution of graphene and a solvent, say water. If you can remove the solvent to leave behind only the graphene framework (or more illustratively, a graphene skeleton), you have yourself a graphene aerogel with some curious characteristics. It is super conductive, ultralight – reaching below the density of atmospheric air in some samples – and has a contact surface area matched by few. This means that it can potentially make astounding improvements in many of the things we use on a daily basis. I was eager to see if it can be applied to something that it had never been tested on before. So when a need for improving the efficiency of batteries came my way, I thought, “why not use graphene aerogel?”
With a stroke of luck, the graphene aerogel turned out to be suitable for the battery. Yet, I didn’t want to end my project there; I wanted to see if the improved battery could directly impact the lives of people. Having reflected upon some of the things I was grateful for, I realized that one of the most wonderful gifts I have received is a quality education. Without it, I wouldn’t have been able to read my favorite books, learn so much about the world or even participate in this competition. Yet, many in underdeveloped regions do not receive basic education. Despite the promotion of global education, a great deal of children are forced out of school to support their families by working on farms or in factories. The only time they could spare for education is in the evenings but even then, the scarcity of reliable lighting means they’re unable to learn in the dark, as much as they want to. Can my battery be used to light up their nights? I didn’t know for sure, so I tried to find out.
When and why did you become interested in science?
My love for science started around the time I was in primary school, when I found myself so curious about everything around me. You can say that every opportunity for me to discover something new was as irresistible as a candy laid before me. Of the many things I wanted to know, scientific demonstrations particularly piqued my interest. They seemed almost magical – water instantly freezing on a hard knock, violent fountains formed from Coca Cola and mints. But I wasn’t satisfied with merely marveling at them. I wanted to appreciate their inner beauty and understand how they actually worked. For me, science is about having a passion for the beauty of the world around us and understanding how and why things happen in it. Isn’t that much more interesting than simply accepting things as they are?
What words of advice would you share with other young scientists?
Never be afraid to ask questions concerning things you are curious about, for what lies ahead is either a path of discovery or at least the joy of learning something new.
Spotlight on Young Scientists: Wei-Tung Chen
Wednesday, August 19, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Wei-Tung, Chen (韋同 陳)
Home: Taipei City, Taiwan
Age Category: 16-18
Project title: Calculating the 3D position of an object from a single source
Weitung’s regular attendance at summer science camps has helped foster his love for inventing. He also recently found an interest in physics and calculating the position of objects using new methods. His project aims to accurately calculate the 3D position of an object using only one source – rather than the multiple sources we rely on today. This system, with a little more development, could have expansive use in areas ranging from wearable computing to location-based applications, where an instant and accurate indoor 3D positioning system is in high demand.
What was the inspiration behind your project?
At first, I was interested in quad copters, and I did brief research on them. At that time, I saw a TED lecture about quad copters astonishing athletes. The lecturer said that the quad copters require a precise indoor positioning system to provide the positioning of the quads and navigate them. This inspired me to explore an indoor positioning system. I studied this topic in depth and began building up a magnetic positioning system. I met with my teacher numerous times and finally found a solution to achieve a precise indoor positioning system using only a source for referencing.
When and why did you become interested in science?
When I was in grade 7, I entered the advanced math and science class, but that's not the reason why I became interested in science. After joining this class, I had a lot of opportunities to attend lectures and activities about science. The most inspirational lecture was the "Creativity, Innovation, and Design" class. This class was held every Sunday during the whole semester. I not only learned how to be innovative and creative and help solve problems in everyday life, but also to acknowledge the importance of teamwork, from coming up with ideas through brainstorming together to executing on the idea and building something together. I learned so much about design and invention during this time and became more enthusiastic about science and creating things using scientific knowledge.
What words of advice would you share with other young scientists?
Use your scientific abilities to help make the world better. No matter how small that the problem is, try to find a way to solve it. Be creative. You may find treasures throughout the process of finding solutions.
Name: Wei-Tung, Chen (韋同 陳)
Home: Taipei City, Taiwan
Age Category: 16-18
Project title: Calculating the 3D position of an object from a single source
Weitung’s regular attendance at summer science camps has helped foster his love for inventing. He also recently found an interest in physics and calculating the position of objects using new methods. His project aims to accurately calculate the 3D position of an object using only one source – rather than the multiple sources we rely on today. This system, with a little more development, could have expansive use in areas ranging from wearable computing to location-based applications, where an instant and accurate indoor 3D positioning system is in high demand.
What was the inspiration behind your project?
At first, I was interested in quad copters, and I did brief research on them. At that time, I saw a TED lecture about quad copters astonishing athletes. The lecturer said that the quad copters require a precise indoor positioning system to provide the positioning of the quads and navigate them. This inspired me to explore an indoor positioning system. I studied this topic in depth and began building up a magnetic positioning system. I met with my teacher numerous times and finally found a solution to achieve a precise indoor positioning system using only a source for referencing.
When and why did you become interested in science?
When I was in grade 7, I entered the advanced math and science class, but that's not the reason why I became interested in science. After joining this class, I had a lot of opportunities to attend lectures and activities about science. The most inspirational lecture was the "Creativity, Innovation, and Design" class. This class was held every Sunday during the whole semester. I not only learned how to be innovative and creative and help solve problems in everyday life, but also to acknowledge the importance of teamwork, from coming up with ideas through brainstorming together to executing on the idea and building something together. I learned so much about design and invention during this time and became more enthusiastic about science and creating things using scientific knowledge.
What words of advice would you share with other young scientists?
Use your scientific abilities to help make the world better. No matter how small that the problem is, try to find a way to solve it. Be creative. You may find treasures throughout the process of finding solutions.
Spotlight on Young Scientists: Monique (Yo) Hsu and Gina (Jing-Tong) Wang
Tuesday, August 18, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Names: Monique (Yo) Hsu and
Gina (Jing-Tong) Wang
Home: Taipei City, Taiwan
Age category: 13-15
Project: Knock on fuel: detecting impurities in gasoline with sound pattern analysis
Gina (Jing-Tong) Wang
Home: Taipei City, Taiwan
Age category: 13-15
Project: Knock on fuel: detecting impurities in gasoline with sound pattern analysis
At school, Monique and Gina learned that an underground gasoline market exists throughout the world. Offenders, most commonly in Asia, blend cheap solvents into gasoline and sell it to the public, cheating people of high quality fuel. Monique and Jing-Tong decided that the public needed to know the difference between pure gasoline and a mixed solvent. By analyzing sound patterns, they found that it was possible to use sound (knocking) to identify different types of liquids and distinguish pure gasoline from a mixed solvent – saving the public the headaches and cost of purchasing fake gasoline.
What was the inspiration behind your project?
Monique: There have been a lot of incidents caused by adulterated gasoline and liquor. And we wanted to change that, so we started thinking of a way that’s easy, cheap and useful for uncovering gasoline impurities. Then we came up with a crazy but usable idea: use the knocking sounds to analyze the different liquids.
Gina: More and more food safety problems are troubling Taiwanese people and people all over the world. There has also been a lot of corruption with gasoline impurity in the world recently. That inspired us to find methods to uncover adulterated goods. That's the reason why we did our project.
When and why did you become interested in science?
Monique: Because my dad is a science teacher, I’ve had a lot of exposure to science from a young age. I have the fortune of access to a lot more science books than other classmates have, and I can ask my dad science questions whenever I want. This has fed my natural love for science, and the more books I read and research I do online, the more I want to probe to use science to probe and discover. So now, I'm really good at science, and I love it, too. Thanks, Dad!
Gina: When I was a child, somewhere around kindergarten, I was curious about the composition of things and really wanted to know things like how a caterpillar transformed into a butterfly. I love meditation. When I was in third grade we did an Independent Study called "ming-shui time." I loved being able to do many little experiments on my own. The experiments, whether independently or at school, are the seeds of scientific discovery.
What words of advice would you share with other young scientists?
Monique: Be curious. Use your smart brain to improve the world, and enjoy doing so of course.
Gina: If you get an idea, just try to test it out. If you have an interest in science, apply it to figure things out.
Spotlight on a Young Scientist: Isabella O'Brien
Monday, August 17, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Isabella O'Brien
Age Category: 13-15
Home: Ontario, Canada
Project: Recycling shell waste to reduce ocean acidification
Isabella became fascinated with finding out how to preserve natural resources when she encountered a sea of dead coral during a diving trip in Mexico. She researched ocean acidification and seashell waste and discovered that she could create an alkaline buffer by recycling the shell waste and adding it back to the ocean. Her project proves that we can drastically reduce ocean acidification and keep organisms happy and alive in their habitats by recycling shells.
What was the inspiration behind your project?
The inspiration behind my project came after a diving holiday in Mexico, where I observed a lot of dead coral. After doing some research, I discovered that humans production of carbon dioxide (CO2) is modifying ocean chemistry through a process known as ocean acidification, a contributing factor to coral loss. Oceans are becoming more acidic, lowering the pH levels and depleting carbonate ions, which are needed for building seashells and coral skeletons. This is forcing organisms to work harder to build their shells, making them vulnerable to predators, and therefore putting the entire marine ecosystem at risk. I also learned that millions of metric tons of shell waste is produced each year worldwide by the seafood industry and that these shells were made up of 95% calcium carbonate. It was this information that made me wonder what would happen if these shells were returned to the ocean and what impact it would have on the problem of ocean acidification.
When and why did you become interested in science?
I had a fantastic science teacher (Mr. Gordon) in grades 1, 2 and 3, who made learning science both fun and exciting. He would often show us videos of Bill Nye the Science Guy, which were great. Also, I was very lucky to be at a school (St Augustine) that held an annual science fair. Students were eligible to enter starting in grade 4. I couldn't wait to do my first science fair project in grade 4, and I’ve loved science and working on science fair projects ever since.
What words of advice would you share with other young scientists?
My advice to other young scientists would be to be curious, ask questions and work on any subject you find interesting. Sometimes it will be difficult, and sometimes things go wrong and you may have to start again, but do not give up. Have fun and help change the world!
Name: Isabella O'Brien
Age Category: 13-15
Home: Ontario, Canada
Project: Recycling shell waste to reduce ocean acidification
Isabella became fascinated with finding out how to preserve natural resources when she encountered a sea of dead coral during a diving trip in Mexico. She researched ocean acidification and seashell waste and discovered that she could create an alkaline buffer by recycling the shell waste and adding it back to the ocean. Her project proves that we can drastically reduce ocean acidification and keep organisms happy and alive in their habitats by recycling shells.
What was the inspiration behind your project?
The inspiration behind my project came after a diving holiday in Mexico, where I observed a lot of dead coral. After doing some research, I discovered that humans production of carbon dioxide (CO2) is modifying ocean chemistry through a process known as ocean acidification, a contributing factor to coral loss. Oceans are becoming more acidic, lowering the pH levels and depleting carbonate ions, which are needed for building seashells and coral skeletons. This is forcing organisms to work harder to build their shells, making them vulnerable to predators, and therefore putting the entire marine ecosystem at risk. I also learned that millions of metric tons of shell waste is produced each year worldwide by the seafood industry and that these shells were made up of 95% calcium carbonate. It was this information that made me wonder what would happen if these shells were returned to the ocean and what impact it would have on the problem of ocean acidification.
When and why did you become interested in science?
I had a fantastic science teacher (Mr. Gordon) in grades 1, 2 and 3, who made learning science both fun and exciting. He would often show us videos of Bill Nye the Science Guy, which were great. Also, I was very lucky to be at a school (St Augustine) that held an annual science fair. Students were eligible to enter starting in grade 4. I couldn't wait to do my first science fair project in grade 4, and I’ve loved science and working on science fair projects ever since.
What words of advice would you share with other young scientists?
My advice to other young scientists would be to be curious, ask questions and work on any subject you find interesting. Sometimes it will be difficult, and sometimes things go wrong and you may have to start again, but do not give up. Have fun and help change the world!
Spotlight on a Young Scientist: Tanay Tandon
Friday, August 14, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Tanay Tandon
Age Category: 16-18
Home: US
Project: Delivering rapid, portable and automated blood morphology tests
Tanay loved hearing his grandfather’s stories of serving patients as a doctor in rural India, but he couldn’t believe that people had to wait in long lines for tests that were easily available in more developed countries. He was inspired to take action after reading a book on informational theory. He sent the authors several emails before receiving a response from a grad student who agreed to work with him. Tanay then wrote an algorithm and created a computer vision model. He attached a low-cost lens imaging system in order to algorithmically classify and count cells in a blood sample. This tool can now provide a rapid, portable and automated blood morphology test in the most rural regions.
What was the inspiration behind your project?
My grandfather was a doctor in rural India and owned his own clinic. Over the years, my mother told me stories of villagers who would line up to get blood biopsies at his clinic, often showing up incredibly early in the morning. This helped me realize the disparity in rural diagnostic conditions (especially for complex internal conditions) and the need for a portable, automated means to analyze blood, especially in areas where trained microbiologists and expensive equipment are scarce. Thus, this project has been a long term goal of mine, and as I have conducted separate research in hematology, machine learning and computer vision, my skills and experience have culminated in this one piece representing my work in the fields of AI and biology.
When and why did you become interested in science?
My interest in science has always stemmed from a love of reading. Some of my earliest memories are sitting with my father and pouring over a book about constellations and astronomy. The concept of finding patterns in seemingly endless swathes of stars was how I got started in the scientific process. Eventually, I abstracted that love for pattern-finding to other fields like math, computer science and artificial intelligence. In my opinion, that in itself is a succinct summary of science – looking at some chaotic system and deciphering meaning through the skills at hand. Whether one does that with a microscope, a computer program or a pencil and paper, the process is essentially the same – a different means to an end, but a very similar end overall.
What words of advice would you share with other young scientists?
Research is all about building a palette of interests and mixing and matching the colors to create something new. Nearly all of my project ideas originate at the confluence of two or more fields – microbiology and artificial intelligence (this project), engineering and chemistry (my portable water treatment project a few years ago). I'd encourage young scientists to diversify their interests, build a love for several fields and then see what beautiful things come from their confluence.
Name: Tanay Tandon
Age Category: 16-18
Home: US
Project: Delivering rapid, portable and automated blood morphology tests
Tanay loved hearing his grandfather’s stories of serving patients as a doctor in rural India, but he couldn’t believe that people had to wait in long lines for tests that were easily available in more developed countries. He was inspired to take action after reading a book on informational theory. He sent the authors several emails before receiving a response from a grad student who agreed to work with him. Tanay then wrote an algorithm and created a computer vision model. He attached a low-cost lens imaging system in order to algorithmically classify and count cells in a blood sample. This tool can now provide a rapid, portable and automated blood morphology test in the most rural regions.
What was the inspiration behind your project?
My grandfather was a doctor in rural India and owned his own clinic. Over the years, my mother told me stories of villagers who would line up to get blood biopsies at his clinic, often showing up incredibly early in the morning. This helped me realize the disparity in rural diagnostic conditions (especially for complex internal conditions) and the need for a portable, automated means to analyze blood, especially in areas where trained microbiologists and expensive equipment are scarce. Thus, this project has been a long term goal of mine, and as I have conducted separate research in hematology, machine learning and computer vision, my skills and experience have culminated in this one piece representing my work in the fields of AI and biology.
When and why did you become interested in science?
My interest in science has always stemmed from a love of reading. Some of my earliest memories are sitting with my father and pouring over a book about constellations and astronomy. The concept of finding patterns in seemingly endless swathes of stars was how I got started in the scientific process. Eventually, I abstracted that love for pattern-finding to other fields like math, computer science and artificial intelligence. In my opinion, that in itself is a succinct summary of science – looking at some chaotic system and deciphering meaning through the skills at hand. Whether one does that with a microscope, a computer program or a pencil and paper, the process is essentially the same – a different means to an end, but a very similar end overall.
What words of advice would you share with other young scientists?
Research is all about building a palette of interests and mixing and matching the colors to create something new. Nearly all of my project ideas originate at the confluence of two or more fields – microbiology and artificial intelligence (this project), engineering and chemistry (my portable water treatment project a few years ago). I'd encourage young scientists to diversify their interests, build a love for several fields and then see what beautiful things come from their confluence.
Spotlight on a Young Scientist: Matthew Reid
Thursday, August 13, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Matthew Reid
Age Category: 13-15
Home: Sussex, UK
Project: The ArduOrbiter: a lightweight, open source satellite
When Matthew learned in science class that 2,000 satellites currently orbit the Earth, he was eager to understand the effect of such a large quantity of satellites. He set out to develop a new lightweight, open source satellite that is under 5 centimeters in size, so that he could observe the earth without overcrowding orbital space. With the money he received from his 14th birthday, he built the ArduOrbiter using existing Arduino technology and aluminum. The ArduOrbiter-1 can communicate effectively and has a long battery life. Matthew looks forward to launching his satellite and using a cluster of them to build an alternative global communications system in the future.
What was the inspiration behind your project?
I have always been interested in space, and after playing the computer game "Kerbal Space Program," I became particularly interested in the mechanics of space flight. This led me to study orbital mechanics and develop an orbital mechanics computer program. I wondered how cool it would be to have my own satellite and remembered Elon Musk’s quote, “If something is important enough, even if the odds are against you, you should still do it.” I started seriously researching the subject. Through this, I discovered CubeSats, which are four-inch cubes filled with electronics and sent into orbit. However, whilst these were cheaper than regular satellites, they still cost hundreds of thousands of dollars to develop and deploy. Then I came across the relatively undeveloped satellite concept of PocketQubes. Although being much smaller than CubeSats (being only 2 inch cubes), they still appeared to cost tens of thousands of dollars to produce. I started to wonder why these satellites were so expensive, since all they had to do was provide power for their payloads and communicate with a ground station. The costs seemed unreasonable, so I decided to build my own PocketQube satellite for a fraction of the cost of traditional PocketQube satellites.
When and why did you become interested in science?
As long as I can remember, I have been interested in science. On New Year’s Eve 2008, when I was eight, I remember my oldest cousin teaching me the basics of atomic theory with chopped tomatoes and cucumber. My cousin went on to get a Master’s Degree in Physics and played a significant role in developing my interest in science, physics in particular. Although my project may be viewed primarily as an engineering project, engineering is the practical implementation of science. My initial interest in engineering came from when, at age nine, I got a “LEGO Mindstorms” set for Christmas. This not only taught me the fundamentals of programming, but also created an interest in developing practical applications for programming which, in turn, has led to my current Space Satellite project.
What words of advice would you share with other young scientists?
Google and YouTube allowed me to access all I needed to know and learn about building my own space satellite – these are essential tools for all scientists and engineers in the twenty-first century and should be utilised as much as possible. Throughout the development of my project, I was amazed by the amount of free help people from around the world were willing to give me. Be polite, take the advice, check it, use it, work hard. And if you want to do it, do it.
Name: Matthew Reid
Age Category: 13-15
Home: Sussex, UK
Project: The ArduOrbiter: a lightweight, open source satellite
When Matthew learned in science class that 2,000 satellites currently orbit the Earth, he was eager to understand the effect of such a large quantity of satellites. He set out to develop a new lightweight, open source satellite that is under 5 centimeters in size, so that he could observe the earth without overcrowding orbital space. With the money he received from his 14th birthday, he built the ArduOrbiter using existing Arduino technology and aluminum. The ArduOrbiter-1 can communicate effectively and has a long battery life. Matthew looks forward to launching his satellite and using a cluster of them to build an alternative global communications system in the future.
What was the inspiration behind your project?
I have always been interested in space, and after playing the computer game "Kerbal Space Program," I became particularly interested in the mechanics of space flight. This led me to study orbital mechanics and develop an orbital mechanics computer program. I wondered how cool it would be to have my own satellite and remembered Elon Musk’s quote, “If something is important enough, even if the odds are against you, you should still do it.” I started seriously researching the subject. Through this, I discovered CubeSats, which are four-inch cubes filled with electronics and sent into orbit. However, whilst these were cheaper than regular satellites, they still cost hundreds of thousands of dollars to develop and deploy. Then I came across the relatively undeveloped satellite concept of PocketQubes. Although being much smaller than CubeSats (being only 2 inch cubes), they still appeared to cost tens of thousands of dollars to produce. I started to wonder why these satellites were so expensive, since all they had to do was provide power for their payloads and communicate with a ground station. The costs seemed unreasonable, so I decided to build my own PocketQube satellite for a fraction of the cost of traditional PocketQube satellites.
When and why did you become interested in science?
As long as I can remember, I have been interested in science. On New Year’s Eve 2008, when I was eight, I remember my oldest cousin teaching me the basics of atomic theory with chopped tomatoes and cucumber. My cousin went on to get a Master’s Degree in Physics and played a significant role in developing my interest in science, physics in particular. Although my project may be viewed primarily as an engineering project, engineering is the practical implementation of science. My initial interest in engineering came from when, at age nine, I got a “LEGO Mindstorms” set for Christmas. This not only taught me the fundamentals of programming, but also created an interest in developing practical applications for programming which, in turn, has led to my current Space Satellite project.
What words of advice would you share with other young scientists?
Google and YouTube allowed me to access all I needed to know and learn about building my own space satellite – these are essential tools for all scientists and engineers in the twenty-first century and should be utilised as much as possible. Throughout the development of my project, I was amazed by the amount of free help people from around the world were willing to give me. Be polite, take the advice, check it, use it, work hard. And if you want to do it, do it.
Spotlight on a Young Scientist: Krtin Nithiyanandam
Wednesday, August 12, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Krtin Nithiyanandam Surrey
Age Category: 13-15
Home: United Kingdon
Project: Improving diagnosis and treatment for Alzheimer’s with new molecular “Trojan Horse”
Krtin benefitted from the power of medical science as a young child who underwent a successful procedure to restore his hearing. He was curious to see if that same power could cure another ailment he learned of on television – Alzheimer's disease. He found that the Aβ oligomers biomarker is present in high concentrations in the brains of Alzheimer’s patients and also appeared during the earliest stage of the disease. Current diagnostic tools identify certain brain activity only present during the later stages of the disease, making it extremely difficult to diagnose the disease early. Krtin’s new molecular 'Trojan Horse' can potentially be used to diagnose Alzheimer's at a much earlier stage, leading to better treatments for patients.
What was the inspiration behind your project?
I was always fascinated by neuroscience, but the inspiration for this project came from when I was reading various journal articles on cancer immunotherapy. Cancer immunotherapy works by using antibodies to alert the immune system to cancer. I wanted to extend the use of antibodies to other diseases, so my project has a slightly similar concept to immunotherapy, but a completely different principle. I also chose Alzheimer's because in Britain, we have a growing aging population and dementia is becoming extremely relevant. Also, Alzheimer's disease is considered to be one of the greatest medical challenges of the 21st century, with the fight against dementia becoming an international effort, so I felt that Alzheimer's disease would be a very relevant topic to focus my project on.
When and why did you become interested in science?
I would say there were multiple moments that triggered my interest in science. I first started to take an interest in medicine after I had a series of operations and a transplant to restore my hearing. I truly admired how doctors and medicine could make a difference in people's lives and I wanted to be able to do the same for others. I also learned in school detail to the applications of science. My teachers were able to extend science out of the classroom and made it more interesting for me.
What words of advice would you share with other young scientists?
Don't be afraid of making mistakes; every great scientist has made mistakes. What made them great was that they persevered regardless of what happened, and they never stopped asking “Why?” That's how they were able to change the world.
Name: Krtin Nithiyanandam Surrey
Age Category: 13-15
Home: United Kingdon
Project: Improving diagnosis and treatment for Alzheimer’s with new molecular “Trojan Horse”
Krtin benefitted from the power of medical science as a young child who underwent a successful procedure to restore his hearing. He was curious to see if that same power could cure another ailment he learned of on television – Alzheimer's disease. He found that the Aβ oligomers biomarker is present in high concentrations in the brains of Alzheimer’s patients and also appeared during the earliest stage of the disease. Current diagnostic tools identify certain brain activity only present during the later stages of the disease, making it extremely difficult to diagnose the disease early. Krtin’s new molecular 'Trojan Horse' can potentially be used to diagnose Alzheimer's at a much earlier stage, leading to better treatments for patients.
What was the inspiration behind your project?
I was always fascinated by neuroscience, but the inspiration for this project came from when I was reading various journal articles on cancer immunotherapy. Cancer immunotherapy works by using antibodies to alert the immune system to cancer. I wanted to extend the use of antibodies to other diseases, so my project has a slightly similar concept to immunotherapy, but a completely different principle. I also chose Alzheimer's because in Britain, we have a growing aging population and dementia is becoming extremely relevant. Also, Alzheimer's disease is considered to be one of the greatest medical challenges of the 21st century, with the fight against dementia becoming an international effort, so I felt that Alzheimer's disease would be a very relevant topic to focus my project on.
When and why did you become interested in science?
I would say there were multiple moments that triggered my interest in science. I first started to take an interest in medicine after I had a series of operations and a transplant to restore my hearing. I truly admired how doctors and medicine could make a difference in people's lives and I wanted to be able to do the same for others. I also learned in school detail to the applications of science. My teachers were able to extend science out of the classroom and made it more interesting for me.
What words of advice would you share with other young scientists?
Don't be afraid of making mistakes; every great scientist has made mistakes. What made them great was that they persevered regardless of what happened, and they never stopped asking “Why?” That's how they were able to change the world.
Spotlight on a Young Scientist: Laura Steponavičiūtė
Tuesday, August 11, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Laura Steponavičiūtė
Age category: 16-18
Home: Vilnius, Lithuania
Project: Detecting the environmental dangers of nanomaterials
Encouraged to read books about the world from a young age by her mother, who’s a science teacher, Laura learned that nanoparticles are in everything from sunscreen to socks. She wondered about their effect on living organisms and used bean sprouts and freshwater to do some testing. She discovered that nanoparticles can lead to higher chemical levels in environments, could potentially force species from their natural habitats and may even lead to extinction. She hopes this research leads to new precautions for nanoparticles and increased awareness about biological effects of chemicals.
What was the inspiration behind your project?
The greatest inspiration for my project is ecology. I’m concerned about keeping our planet and its organisms safe. Nanotechnologies is part of a widely expanded research field and various life changing inventions were created by using them. Though in my opinion, science has to be developed comprehensively, it has to be beneficial for humanity and not harmful for nature. While reading about nanotechnologies I had to face the fact that there’s little information about toxicity of nanomaterials. I’ve started thinking about how I could examine the harmful impact of nanoparticles on organisms, for example plants. My teacher encouraged me to try to study the effects to growth processes.
When and why did you become interested in science?
Nature and science fascinated me since I can remember. I loved taking huge science atlases from the bookshelves and flipping through pages looking for illustrations. When I learned to read, I used to search the pages from atlases I liked the most and read them. If I didn’t know what something meant, I would take the book and go to my mother. She explained what I couldn’t understand. She also took me to her classroom, where there were various models and devices for demonstrative experiments. I remember my sister and I playing with these devices and our mother explaining to us why the devices were created. Then in school, I started learning things by myself, and could explore deeper the laws of nature. I want to know answers to the questions that pop in my head while reading articles or discussing various topics. I want to help to improve our environment and help people. I see science as a way to do that.
What words of advice would you share with other young scientists?
Every time you are able to learn from a difficult situation, you win. You create your own opportunities. Do not be afraid to dream because what is life without crazy ideas?
Name: Laura Steponavičiūtė
Age category: 16-18
Home: Vilnius, Lithuania
Project: Detecting the environmental dangers of nanomaterials
Encouraged to read books about the world from a young age by her mother, who’s a science teacher, Laura learned that nanoparticles are in everything from sunscreen to socks. She wondered about their effect on living organisms and used bean sprouts and freshwater to do some testing. She discovered that nanoparticles can lead to higher chemical levels in environments, could potentially force species from their natural habitats and may even lead to extinction. She hopes this research leads to new precautions for nanoparticles and increased awareness about biological effects of chemicals.
What was the inspiration behind your project?
The greatest inspiration for my project is ecology. I’m concerned about keeping our planet and its organisms safe. Nanotechnologies is part of a widely expanded research field and various life changing inventions were created by using them. Though in my opinion, science has to be developed comprehensively, it has to be beneficial for humanity and not harmful for nature. While reading about nanotechnologies I had to face the fact that there’s little information about toxicity of nanomaterials. I’ve started thinking about how I could examine the harmful impact of nanoparticles on organisms, for example plants. My teacher encouraged me to try to study the effects to growth processes.
When and why did you become interested in science?
Nature and science fascinated me since I can remember. I loved taking huge science atlases from the bookshelves and flipping through pages looking for illustrations. When I learned to read, I used to search the pages from atlases I liked the most and read them. If I didn’t know what something meant, I would take the book and go to my mother. She explained what I couldn’t understand. She also took me to her classroom, where there were various models and devices for demonstrative experiments. I remember my sister and I playing with these devices and our mother explaining to us why the devices were created. Then in school, I started learning things by myself, and could explore deeper the laws of nature. I want to know answers to the questions that pop in my head while reading articles or discussing various topics. I want to help to improve our environment and help people. I see science as a way to do that.
What words of advice would you share with other young scientists?
Every time you are able to learn from a difficult situation, you win. You create your own opportunities. Do not be afraid to dream because what is life without crazy ideas?
Spotlight on a Young Scientist: Anurudh Ganesan
Monday, August 10, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Anurudh Ganesan
Home: Clarksburg, Maryland, US
Age Category: 13-15
Project: VAXXWAGON: a reliable way to store and transport vaccines
As an infant in India, Anurudh’s grandparents carried him 10 miles for a vaccine, only to find that the vaccinations were no longer viable due to a lack of refrigeration. He knew that story well, and decided that one day he’d find a better and more reliable way to transport vaccines to remote locations. He brainstormed with a few local professors to come up with the idea for a "no ice, no electric" vaccine transportation system. Based on intensive test results in the lab, he created a simple vapor compression refrigeration system easily powered by humans or even animals. This model can successfully deliver vaccines without compromising the integrity of the antibodies, serving more people who urgently need intact and effective vaccinations.
What was the inspiration behind your project?
When I was an infant, my grandparents walked me 10 miles to a remote clinic in India in order to receive a vaccination. When we arrived, the vaccines were ineffective due to the high temperatures and lack of refrigeration. Eventually, I got the vaccination. I was fortunate but others are not. I later found out that according to UNICEF, 1.5 million children die as a result of not getting the safe and effective vaccines that they so desperately need. Also, I discovered that vaccines can become frozen because of ice-packs, also rendering them ineffective. This inspired me to explore a better method of refrigerating vaccines in the last-leg, particularly in developing countries. So, my ultimate goal is to develop a refrigeration system for last-leg vaccine transportation taking a “no ice, no electric” approach. By considering the current demand and utilization of water and electricity, VAXXWAGON can effectively transport vaccines in the last-leg, without the use of ice and electricity, which would save thousands of lives throughout the world.
When and why did you become interested in science?
When I was five, my dad and I were refueling our car at a nearby gas station. I asked my dad then, “can we invent a self powered vehicle that doesn't need gas?” My dad never forgot that conversation and inspired me to learn everything I could about self-generating power. I’ve participated in several science fairs, starting from second grade until now, researching diversified topics from self-generating power to biometrics and public health. Science allows me to dream, imagine, explore and question unknown things. This creative freedom allows me to be limitless in my thinking!
What words of advice would you share with other young scientists?
Young scientists shouldn't worry about failing and shouldn't be discouraged about their passions, even when they face big challenges. We can choose to focus on ideas for solving urgent and life threatening global issues in this ever-changing world. I also believe most importantly, that the results of these young scientist’s discoveries should be a solution that helps and creates opportunities for a better quality of life worldwide.
Name: Anurudh Ganesan
Home: Clarksburg, Maryland, US
Age Category: 13-15
Project: VAXXWAGON: a reliable way to store and transport vaccines
As an infant in India, Anurudh’s grandparents carried him 10 miles for a vaccine, only to find that the vaccinations were no longer viable due to a lack of refrigeration. He knew that story well, and decided that one day he’d find a better and more reliable way to transport vaccines to remote locations. He brainstormed with a few local professors to come up with the idea for a "no ice, no electric" vaccine transportation system. Based on intensive test results in the lab, he created a simple vapor compression refrigeration system easily powered by humans or even animals. This model can successfully deliver vaccines without compromising the integrity of the antibodies, serving more people who urgently need intact and effective vaccinations.
What was the inspiration behind your project?
When I was an infant, my grandparents walked me 10 miles to a remote clinic in India in order to receive a vaccination. When we arrived, the vaccines were ineffective due to the high temperatures and lack of refrigeration. Eventually, I got the vaccination. I was fortunate but others are not. I later found out that according to UNICEF, 1.5 million children die as a result of not getting the safe and effective vaccines that they so desperately need. Also, I discovered that vaccines can become frozen because of ice-packs, also rendering them ineffective. This inspired me to explore a better method of refrigerating vaccines in the last-leg, particularly in developing countries. So, my ultimate goal is to develop a refrigeration system for last-leg vaccine transportation taking a “no ice, no electric” approach. By considering the current demand and utilization of water and electricity, VAXXWAGON can effectively transport vaccines in the last-leg, without the use of ice and electricity, which would save thousands of lives throughout the world.
When and why did you become interested in science?
When I was five, my dad and I were refueling our car at a nearby gas station. I asked my dad then, “can we invent a self powered vehicle that doesn't need gas?” My dad never forgot that conversation and inspired me to learn everything I could about self-generating power. I’ve participated in several science fairs, starting from second grade until now, researching diversified topics from self-generating power to biometrics and public health. Science allows me to dream, imagine, explore and question unknown things. This creative freedom allows me to be limitless in my thinking!
What words of advice would you share with other young scientists?
Young scientists shouldn't worry about failing and shouldn't be discouraged about their passions, even when they face big challenges. We can choose to focus on ideas for solving urgent and life threatening global issues in this ever-changing world. I also believe most importantly, that the results of these young scientist’s discoveries should be a solution that helps and creates opportunities for a better quality of life worldwide.
Spotlight on a Young Scientist: Girish Kumar
Friday, August 7, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Girish Kumar
Home: Singapore
Age category: 16-18
Project: RevUp: improving learning through auto-generated study questions
Between receiving his first computer as a gift from his father and eight years of Robotic Club membership, Girish can’t remember a time when he wasn’t driven by science or building. As a student, he frequently relies on online texts to supplement classroom materials, but he doesn’t feel like they prepare him enough to learn relevant concepts. So Girish recruited help from local professors to code a tool that automatically generates questions spurred by manually inserted and relevant text. RevUp helps students study and provides an extremely efficient way for teachers to stop crafting their own review materials and start relying on automation.
What was the inspiration behind your project?
Last year, my entire class was obsessed with QuizUP, a mobile game where users could challenge friends to trivia questions. However, the more we played, the more repetitive questions started to become, taking the challenge and adrenaline rush away. This was because actual people were drafting questions, which limited the number of questions. That got me thinking: if there was way that questions could be automatically generated, players could get a much greater variety of questions. And of course, a more exciting game experience! I got hooked.
Soon after, my friend joked that if QuizUp was used in lessons, he would ace biology with great ease. Biology is an extremely knowledge-driven and content-driven subject in my school and quizzing often helps reinforce key concepts. That comment struck me, and I decided to “pivot” my idea to one that suited education.
When and why did you become interested in science?
Unlike most teenage programmers, I wasn’t fascinated with my first computer. I was disappointed.
As a kid, I used to watch countless TV shows that often depicted computers as intelligent, intelligent enough to engage in conversations. And obviously, the first computer my family bought was not able to do that. I was pretty disappointed. And that’s where and when my interest in Artificial Intelligence (AI) really took flight.
Things naturally progressed after that. I joined my elementary school’s robotics team, got into programming and took online courses on Machine Learning and AI in high school. I worked on exciting machine learning projects, dealing with topics such as gesture recognition and indoor localisation, as an intern at local laboratories. I felt a need to leverage A.I. to empower people. That’s why I’m continuing to work on RevUP: to put it in the hands of students and teachers worldwide.
What words of advice would you share with other young scientists?
Name: Girish Kumar
Home: Singapore
Age category: 16-18
Project: RevUp: improving learning through auto-generated study questions
Between receiving his first computer as a gift from his father and eight years of Robotic Club membership, Girish can’t remember a time when he wasn’t driven by science or building. As a student, he frequently relies on online texts to supplement classroom materials, but he doesn’t feel like they prepare him enough to learn relevant concepts. So Girish recruited help from local professors to code a tool that automatically generates questions spurred by manually inserted and relevant text. RevUp helps students study and provides an extremely efficient way for teachers to stop crafting their own review materials and start relying on automation.
What was the inspiration behind your project?
Last year, my entire class was obsessed with QuizUP, a mobile game where users could challenge friends to trivia questions. However, the more we played, the more repetitive questions started to become, taking the challenge and adrenaline rush away. This was because actual people were drafting questions, which limited the number of questions. That got me thinking: if there was way that questions could be automatically generated, players could get a much greater variety of questions. And of course, a more exciting game experience! I got hooked.
Soon after, my friend joked that if QuizUp was used in lessons, he would ace biology with great ease. Biology is an extremely knowledge-driven and content-driven subject in my school and quizzing often helps reinforce key concepts. That comment struck me, and I decided to “pivot” my idea to one that suited education.
When and why did you become interested in science?
Unlike most teenage programmers, I wasn’t fascinated with my first computer. I was disappointed.
As a kid, I used to watch countless TV shows that often depicted computers as intelligent, intelligent enough to engage in conversations. And obviously, the first computer my family bought was not able to do that. I was pretty disappointed. And that’s where and when my interest in Artificial Intelligence (AI) really took flight.
Things naturally progressed after that. I joined my elementary school’s robotics team, got into programming and took online courses on Machine Learning and AI in high school. I worked on exciting machine learning projects, dealing with topics such as gesture recognition and indoor localisation, as an intern at local laboratories. I felt a need to leverage A.I. to empower people. That’s why I’m continuing to work on RevUP: to put it in the hands of students and teachers worldwide.
What words of advice would you share with other young scientists?
- Do not waste time overthinking or over planning. Get your hands dirty and just start building/experimenting.
- For engineers especially: Iterate fast. Build. Fail. Improve. Repeat.
- Failure often paves way for insightful and surprising discoveries.
Spotlight on a Young Scientist: Anela Arifi and Ilda Ismaili
Thursday, August 6, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in our Spotlight on a Young Scientist series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Names: Anela Arifi, Ilda Ismaili
Home: Tuzla, Bosnia and Herzegovina
Age category: 16-18
Project: A system for alternative fuel production and storage using chicken feathers and fat
What was the inspiration behind your project?
Anela: Today, people have huge problems maintaining enough energy for their normal needs. I saw a need to invent new fuels and find acceptable storage for those fuels. What most inspires me is solving problems that we face. Just knowing that a formula, design or experiment that we come up with can solve big problems amazes. But everything has to be well organized. So, the first thing I did was set four aims: 1. achieve energy-efficiency 2. aim for the cost-effectiveness 3. make a good quality product 4. don’t pollute the environment with it. We wanted to find one material from which both a fuel and a material for storing fuel could be made. Using Google search, we discovered that both of the products can be produced by using chicken feathers. After looking into the statistics of chicken-feather waste in our country and in the world, we came to the conclusion that using chicken feathers would be a great environmentally-friendly solution. We tested the feathers in the laboratory and read many science articles and discovered that biodiesel (fuel) and material for storing hydrogen (storing fuel) could be produced by using chicken feathers. And since I’m a great fan of designing devices and inventing, Ilda and I designed a two-reactor system that would produce both by using the same process energy. We solved a problem by thinking of changing the world, maintaining a commodity in our everyday lives, reusing materials, inventing and experimenting.
Ilda: As Niel Armstrong said: "This is a small step for man, but a giant leap for mankind." That was my inspiration to do this. To be a part of that small step for man, and hope that someday it'll become a part of amazing discoveries and projects that helped to change the world. That way of thinking made me do this. Why this topic? We rely on fossil fuels, but we’re not aware that they’re slowly disappearing. I know that many researchers claim that we’ll run out of fossil fuels in 40 years or so, but I don't think that's true. They will be around longer than that, but what we’re not aware of is that we’re killing our own planet by using them. So Anela and I decided to focus on alternative fuels that could help solve problems of today like, pollution and economy struggles. And of course, one day, let's say 200 years from now when we run out of fossil fuels, we hope that our project and our idea could be one of many good things that will help save our planet earth. And THAT is a giant leap for mankind.
When and why did you become interested in science?
Anela: I remember being a small girl (my mother says I was four) and asking my mom; "Why is the sky blue?" My mom answered my question the best she could, but I kept asking “why?” I wondered whether there’s more to it than I could see and understand. My wondering and thinking about the complexity of everything came in handy when I started competing in national math, physics and chemistry competitions. I just loved the feeling of getting the right solution after thinking and rethinking. So, I could say that I was interested in science throughout my entire life actually. In high school I started applying my knowledge towards solving the problems on paper and in practice too, so I managed to make some successful science projects also. So when it comes down to it, I can say that my interest in science began when I was four years old holding my mother’s hand, wondering.
Ilda: I've been interested in science as long as I can remember. Even as a little girl, I was fascinated by plant growing, wondering how cars work, finding out why and how we laugh and sleep. I didn't realize back then that all of that was tied to science. While attending elementary school, I competed in many science competitions, such as science fairs and physics, chemistry and biology competitions. My favourite subject is biology, and you’ll see that biology plays a big part in our project. When I got to high school, I was introduced to more serious science competitions, that made me incorporate my own ideas. I could come up with an idea and present it to the rest of the world. It was then that I realized how beautiful science is. It has no rules or restrictions or boundaries. It's the same in every country. That's why I started to be interested in science. And I love it.
What words of advice would you share with other young scientists?
Anela: Never stop wondering. Think and rethink until you understand. And even if you have troubles with your research, wondering, thinking and rethinking will make it work.
Ilda: The best advice I ever got is that knowledge is power and to keep reading and learning. That's what I'll tell my fellow scientists. An idea you have may not work the first time, or the third or even the hundredth time, but it will eventually. Mine did. So keep on trying.
Names: Anela Arifi, Ilda Ismaili
Home: Tuzla, Bosnia and Herzegovina
Age category: 16-18
Project: A system for alternative fuel production and storage using chicken feathers and fat
Anela and Ilda have been interested in science their entire lives. A science lesson about Rosalind Franklin inspired them to apply their passion to address a big challenge facing their country. They questioned how they could use waste material for alternative fuel production and storage to address the rapid rate of urbanization and increased demand for fuel in their country. Using local laboratory furnaces, the two tested the large amount of poultry waste in in their town and found that the chicken feathers could store hydrogen, while the fat produced fuel. Anela and Ilda’s ingenious system could restore the environment, while providing jobs to rural community members.
What was the inspiration behind your project?
Anela: Today, people have huge problems maintaining enough energy for their normal needs. I saw a need to invent new fuels and find acceptable storage for those fuels. What most inspires me is solving problems that we face. Just knowing that a formula, design or experiment that we come up with can solve big problems amazes. But everything has to be well organized. So, the first thing I did was set four aims: 1. achieve energy-efficiency 2. aim for the cost-effectiveness 3. make a good quality product 4. don’t pollute the environment with it. We wanted to find one material from which both a fuel and a material for storing fuel could be made. Using Google search, we discovered that both of the products can be produced by using chicken feathers. After looking into the statistics of chicken-feather waste in our country and in the world, we came to the conclusion that using chicken feathers would be a great environmentally-friendly solution. We tested the feathers in the laboratory and read many science articles and discovered that biodiesel (fuel) and material for storing hydrogen (storing fuel) could be produced by using chicken feathers. And since I’m a great fan of designing devices and inventing, Ilda and I designed a two-reactor system that would produce both by using the same process energy. We solved a problem by thinking of changing the world, maintaining a commodity in our everyday lives, reusing materials, inventing and experimenting.
Ilda: As Niel Armstrong said: "This is a small step for man, but a giant leap for mankind." That was my inspiration to do this. To be a part of that small step for man, and hope that someday it'll become a part of amazing discoveries and projects that helped to change the world. That way of thinking made me do this. Why this topic? We rely on fossil fuels, but we’re not aware that they’re slowly disappearing. I know that many researchers claim that we’ll run out of fossil fuels in 40 years or so, but I don't think that's true. They will be around longer than that, but what we’re not aware of is that we’re killing our own planet by using them. So Anela and I decided to focus on alternative fuels that could help solve problems of today like, pollution and economy struggles. And of course, one day, let's say 200 years from now when we run out of fossil fuels, we hope that our project and our idea could be one of many good things that will help save our planet earth. And THAT is a giant leap for mankind.
When and why did you become interested in science?
Anela: I remember being a small girl (my mother says I was four) and asking my mom; "Why is the sky blue?" My mom answered my question the best she could, but I kept asking “why?” I wondered whether there’s more to it than I could see and understand. My wondering and thinking about the complexity of everything came in handy when I started competing in national math, physics and chemistry competitions. I just loved the feeling of getting the right solution after thinking and rethinking. So, I could say that I was interested in science throughout my entire life actually. In high school I started applying my knowledge towards solving the problems on paper and in practice too, so I managed to make some successful science projects also. So when it comes down to it, I can say that my interest in science began when I was four years old holding my mother’s hand, wondering.
Ilda: I've been interested in science as long as I can remember. Even as a little girl, I was fascinated by plant growing, wondering how cars work, finding out why and how we laugh and sleep. I didn't realize back then that all of that was tied to science. While attending elementary school, I competed in many science competitions, such as science fairs and physics, chemistry and biology competitions. My favourite subject is biology, and you’ll see that biology plays a big part in our project. When I got to high school, I was introduced to more serious science competitions, that made me incorporate my own ideas. I could come up with an idea and present it to the rest of the world. It was then that I realized how beautiful science is. It has no rules or restrictions or boundaries. It's the same in every country. That's why I started to be interested in science. And I love it.
What words of advice would you share with other young scientists?
Anela: Never stop wondering. Think and rethink until you understand. And even if you have troubles with your research, wondering, thinking and rethinking will make it work.
Ilda: The best advice I ever got is that knowledge is power and to keep reading and learning. That's what I'll tell my fellow scientists. An idea you have may not work the first time, or the third or even the hundredth time, but it will eventually. Mine did. So keep on trying.
Spotlight on a Young Scientist: Adriel Sumathipala
Wednesday, August 5, 2015
Editor's note: We're celebrating this year's impressive 20 Google Science Fair finalist projects over 20 days in ourSpotlight on a Young Scientist Series. Learn more about each of these inspiring young people and hear what inspires them in their own words.
Name: Adriel Sumathipala
Home: Virginia, USA
Age category: 16-18
Project: Creating a simple diagnostic tool for earlier detection of cardiac disease
Adriel met his grandfather through stories and grainy photos. In those stories, he also learned about the cardiac disease that caused his grandfather’s fatal heart attack when Adriel’s father was just 16. Wanting to prevent cardiac disease for future generations, Adriel worked with his favorite biology professor to research faster ways to detect heart illness. As a university student, he found a new biomarker for cardiac issues, allowing him to create a new affordable and simple diagnostic tool to detect cardiac disease much earlier than current tools in the market.
What was the inspiration behind your project?
I met my grandfather through my dad’s (often exaggerated and fantastical) stories; he died in his sleep from a stroke when my father was 16 years old. The odd thing about his death was that no one knew my grandfather had cardiac disease. In an underdeveloped country like Sri Lanka, troubled more by malaria than chronic diseases, who would test for cardiac disease?
When I was 14 years old, I was identified as being at risk for cardiac disease, based upon my precariously high cholesterol levels. Having already lost a family member to this disease, I began to follow a strict regimen of exercise and closely watched what I ate. However, after a few months, I failed to monitor my diet and exercise because I felt in the dark about my disease.
Was monitoring my diet closely and exercising regularly reducing my perilously high risk for cardiac disease?
Current diagnostics are tucked away in labs, expensive, and slow to report results, making it challenging for at-risk patients like myself to assess the effectiveness of their prescribed regimen. I just knew a better diagnostic could be made, so I began work on making my own.
I made my diagnostic for my family, for my older brother, younger sister, and dad who are all at risk for heart disease. I realized that we all needed a device that could easily track our risk for cardiac disease. So, I tried to make something simple, fast, and accurate to do just that for my family.
There’s a different kind of inspiration that comes from helping the people you love most. It doesn’t come in a moment of cerebral realization or with the flickering of an imaginary light bulb. It’s a continuous and unlimited inspiration. The kind of inspiration that pushed me through late nights in the lab, kept me going after innumerable failures, and stopped me from giving up my work.
When and why did you become interested in science?
While I can’t point to a pivotal moment that forever changed my interests, I can tell you why I love science.
Perhaps it started with my curiosity. I’m sure all parents and kids with younger siblings are aware of the incessantly inquisitive nature of young children; it starts just about when they learn to speak, and gradually fades away as the child grows older.
Unfortunately for my parents, that last bit didn’t happen and I never quite stopped asking them questions. In a world of questions, a universe of unknowns, science manifests itself as a brilliant arbitrator of reason. Sure, there’s no denying the incredible benefits science has brought unto humanity, but at its most fundamental level, science interests me because it explains the world around me, constantly fueling my curiosity. It’s the power of science to reveal truth and give meaning to existence that truly fascinated me.
As I grew older, I came to see science as more than just a means of explaining the unexplainable; I began to see it as a means to an end. An end that leaves a healthy, just and sustainable planet and that will ensure that my children will live long and happy lives.
This is the promise of science in the 21st century and the promise that lured me to science research. Its a simple promise of a better world. And it’s been worth every minute of my time to work towards this aim.
What words of advice would you share with other young scientists?
When you think about giving up, remember why and for whom you started your research.
Don’t compare your work to that of others; you’re the world’s foremost expert on your own research.
Find a balance between following established protocols and discovering your own methods; no genuine research is a radical departure from previous work, and humanity has, and always will, advance through small and incremental successes
Young people who are changing the world through science
Tuesday, August 4, 2015
(Cross-posted on the Google for Work, Student and Research blogs)
Sometimes the biggest discoveries are made by the youngest scientists. They’re curious and not afraid to ask, and it’s this spirit of exploration that leads them to try, and then try again. Thousands of these inquisitive young minds from around the world submitted projects for this year’s Google Science Fair, and today we’re thrilled toannounce the 20 Global Finalists whose bright ideas could change the world.
From purifying water with corn cobs to transporting Ebola antibodies through silk; extracting water from air or quickly transporting vaccines to areas in need, these students have all tried inventive, unconventional things to help solve challenges they see around them. And did we mention that they’re all 18 or younger?
We’ll be highlighting each of the impressive 20 finalist projects over the next 20 days in the Spotlight on a Young Scientist series on the Google for Education blog to share more about these inspirational young people and what inspires them.
Then on September 21st, these students will join us in Mountain View to present their projects to a panel of notable international scientists and scholars, eligible for a $50,000 scholarship and other incredible prizes from our partners at LEGO Education, National Geographic, Scientific American and Virgin Galactic.
Congratulations to our finalists and everyone who submitted projects for this year’s Science Fair. Thank you for being curious and brave enough to try to change the world through science.
Should My Kid Learn to Code?
Tuesday, July 14, 2015
(Cross-posted on the Google Research Blog.)
Over the last few years, successful marketing campaigns such as Hour of Code and Made with Code have helped K12 students become increasingly aware of the power and relevance of computer programming across all fields. In addition, there has been growth in developer bootcamps, online “learn to code” programs (code.org, CS First,Khan Academy, Codecademy, Blockly Games, etc.), and non-profits focused specifically on girls and underrepresented minorities (URMs) (Technovation, Girls who Code, Black Girls Code, #YesWeCode, etc.).
This is good news, as we need many more computing professionals than are currently graduating from Computer Science (CS) and Information Technology (IT) programs. There is evidence that students are starting to respond positively too, given undergraduate departments are experiencing capacity issues in accommodating all the students who want to study CS.
Most educators agree that basic application and internet skills (typing, word processing, spreadsheets, web literacy and safety, etc.) are fundamental, and thus, “digital literacy” is a part of K12 curriculum. But is coding now a fundamental literacy, like reading or writing, that all K12 students need to learn as well?
In order to gain a deeper understanding of the devices and applications they use everyday, it’s important for all students to try coding. In doing so, this also has the positive effect of inspiring more potential future programmers. Furthermore, there are a set of relevant skills, often consolidated as “computational thinking”, that are becoming more important for all students, given the growth in the use of computers, algorithms and data in many fields. These include:
- Abstraction, which is the replacement of a complex real-world situation with a simple model within which we can solve problems. CS is the science of abstraction: creating the right model for a problem, representing it in a computer, and then devising appropriate automated techniques to solve the problem within the model. A spreadsheet is an abstraction of an accountant’s worksheet; a word processor is an abstraction of a typewriter; a game like Civilization is an abstraction of history.
- An algorithm is a procedure for solving a problem in a finite number of steps that can involve repetition of operations, or branching to one set of operations or another based on a condition. Being able to represent a problem-solving process as an algorithm is becoming increasingly important in any field that uses computing as a primary tool (business, economics, statistics, medicine, engineering, etc.). Success in these fields requires algorithm design skills.
- As computers become essential in a particular field, more domain-specific data is collected, analyzed and used to make decisions. Students need to understand how to find the data; how to collect it appropriately and with respect to privacy considerations; how much data is needed for a particular problem; how to remove noise from data; what techniques are most appropriate for analysis; how to use an analysis to make a decision; etc. Such data skills are already required in many fields.
These computational thinking skills are becoming more important as computers, algorithms and data become ubiquitous. Coding will also become more common, particularly with the growth in the use of visual programming languages, like Blockly, that remove the need to learn programming language syntax, and via custom blocks, can be used as an abstraction for many different applications.
One way to represent these different skill sets and the students who need them is as follows:
All students need digital literacy, many need computational thinking depending on their career choice, and some will actually do the software development in high-tech companies, IT departments, or other specialized areas. I don’t believe all kids should learn to code seriously, but all kids should try it via programs like code.org, CS Firstor Khan Academy. This gives students a good introduction to computational thinking and coding, and provides them with a basis for making an informed decision on whether CS or IT is something they wish to pursue as a career.